Global asymptotic stability for quadratic fractional difference equation
نویسندگان
چکیده
منابع مشابه
Global asymptotic stability of a higher order rational difference equation
In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...
متن کاملGlobal Dynamics of Certain Homogeneous Second-Order Quadratic Fractional Difference Equation
We investigate the basins of attraction of equilibrium points and minimal period-two solutions of the difference equation of the form x(n+1) = x²(n-1)/(ax²(n) + bx(n)x(n-1) + cx²(n-1)), n = 0,1, 2,…, where the parameters a, b, and c are positive numbers and the initial conditions x₋₁ and x₀ are arbitrary nonnegative numbers. The unique feature of this equation is the coexistence of an equilib...
متن کاملGlobal stability of a rational difference equation
We consider the higher-order nonlinear difference equation xn 1 p qxn−k / 1 xn rxn−k , n 0, 1, . . . with the parameters, and the initial conditions x−k, . . . , x0 are nonnegative real numbers. We investigate the periodic character, invariant intervals, and the global asymptotic stability of all positive solutions of the above-mentioned equation. In particular, our results solve the open probl...
متن کاملFixed points and asymptotic stability of nonlinear fractional difference equations
In this paper, we discuss nonlinear fractional difference equations with the Caputo like difference operator. Some asymptotic stability results of equations under investigated are obtained by employing Schauder fixed point theorem and discrete Arzela-Ascoli’s theorem. Three examples are also provided to illustrate our main results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2015
ISSN: 1687-1847
DOI: 10.1186/s13662-015-0525-4